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ENTROPY INCREASE IN DYNAMICAL SYSTEMS 

BY 

SHELDON GOLDSTEIN* 

ABSTRACq" 

The rate of increase of the non-equilibrium entropy introduced by Goldstein 
and Penrose, defined on nonstationary probability measures for an abstract 
dynamical system, is quantitatively related to the Kolmogorov-Sinai entropy of 
the system. It is shown in particular that for ergodic systems the asymptotic rate 
of entropy increase coincides with the Kolmogorov-Sinai entropy. 

I. Introduct ion  

In [3] a candidate for a non-equilibrium entropy was introduced. There this 

quantity was shown to be non-decreasing with time, and various aspects of the 

entropy increase were related to familiar properties of the dynamical system. We 

will review these matters below. In this paper we will establish some quantative 

relationships between entropy increase and the Kolmogorov-Sinai (KS) entropy 

of the dynamical system. 
Let (~, ~,/z, ~b) be an abstract dynamical system, i.e., th is an automorphism of 

the nonatomic Lebesgue space (~ ,~ , /z )  [1,8]. We denote by H(~b) the KS 
entropy of 4), and by H(P, ok) the KS entropy of 4) relative to the finite partition 
P of ~. Recall that H(~b)= suppH(P, 4)) and that 

H(P, 4)) = l i m - - 1 H ( " V ' ~ ' P )  ; 
. ~ r l  \ i = 0  / 

here we use the notation H(Q)-= -X /x  (Qi)log/z (Qi) for the entropy of the 

finite (or countable) partition Q = (Q~) of ~. (The basic definitions and 

properties of the KS entropy may be found in [1] or [2].) 

The KS entropy is a property of the automorphism ~b (and the "equilibrium" 

state/z) and not a property of non-equilibrium states (probability measures) on 
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~. Let v be a probability measure on ~f absolutely continuous with respect to/.t 

and let p = du/dlx. Let 

(1.1) h (v) = - f p log pdtx, 

and note that - oo < h (v) =< 0. States evolve according to 

(1.2) v, = v o qb -', t E Z, 

and h(v,) is constant in t. For any sub-cr-algebra s /C3 : ,  let the entropy of v 

given M be 

(v, M) = - J pa log p~d/~, h 

(1.3) 
= - ( log p~,dv 

where d 

(1.4) p~ = E(p  I M) 

(the conditional expectation of p given M) is the derivative of v w.r.t./~, both 

regarded as measures on M rather than ~:. In [3] the following properties of 

h(v, M) are established: 

(1.5) 

Suppose OhM D M. Then 

(1.6) 1. 

0. h (v,, M) = h (v, ~b-'M). 

h(v,,M)>-_h(vs, M) for t_-- s. 

(1.7) 2. l imh(v, ,M)= h(v,M| 

where M.  --- lim,~. $ - 'M = i"),q~-'M. In particular, if M.  is trivial, e.g. if M = Me,' 

~b a K-automorphism, 

(1.8) Jim h (v,, M) = h (/,~, M) ( = 0.). 

For every sub-a-algebra satisfying 4~M D M we have a (non-decreasing) 

non-equilibrium entropy, h(v,M). Of particular importance to us will be the 

increasing tr-algebras Mp, ~bMe D M, given by 

(1.9) M e -  V ,b-"P 
n ~ O  

* See equation (1.9). 
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for every finite partition P of ~f. (It is argued in [3] that if (~, ~,/z, 4)) represents 

a classical physical system, then the "physical" non-equilibrium entropy should 

be identified with h (u, Mp), where P is the finite partition of ~f corresponding to 

the outcomes of all physically possible present observations and Mp is thus the 

o'-algebra of events observable in the future.) 

In this paper we shall be primarily concerned with entropy increase. 

DEFINITION 1.1. Suppose 4)M D M and v "~/x with h ( u ) >  -oo. Then 

(1.10) i * ( v , M )  = h(vo4) - ' ,M) -  h(v,M) 

is the entropy increase for 4) given v and M. Let 

(1.11) A*(M) = supA*(v, M) 
v 

be the entropy increase for 4) given M. Suppose 4) is ergodic and H(4)) < ~. Then'  

A* = infA*(Mp), 

(1.12) P finite, 

H(P, 4)) = H(r  

is the entropy increase for 4), and let 

1 
A.*~ = lim sup• *', t E Z, 

t ~  t 

be the asymptotic rate of entropy increase for 4). 
The following properties of the entropy increase were established in [3]: 

(1.13) (i) A * ( M , ) > 0  r H(P, 4))>0.  

(More generally, for M C (ks/ 

> o, 

where H(-II') denotes conditional entropy [71, which will be described in 

section 3.) In particular, 

(ii) A * ( s / ) = 0  for all s / C 4 ) s / r  n ( r  0, 

and 

*The infimum in (1.12) is over a nonempty set, since H(P,,b)=H(r if P is a generator, 
v.~z~b'P = ~: (mod 0), and the existence of a finite generator P is assured since 4' is ergodic and 
H(4,) < ~ I5,111. 
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I 1 I 

log 2 log 3 log 4 s r 

Fig. 1 

(iii) A * ( ~ p ) > 0  for all nontrivial finite partitions P r  ~b is a K- 

automorphism. 
In the next section we will describe a more detailed relationship between 

entropy increase and KS entropy. 

2. Main results 

Let f be the function graphed in Fig. 1; f(~j)= log(n + 1) for log n <~: =< 

log(n + 1), n = 1 , 2 , . . . ;  f ( 0 ) = 0 .  

THEOREM 2.1. 

(2.1) 

TI-mOREM 2.2. 

(2.2) 

Suppose ~b is ergodic and H(4,)< oo. Then 

A'~ = f(H(6 )). 

Suppose ck is ergodic and H(~b)<o0. Then 

A~s = l i m - - =  H ( 0 ) .  
n ~ n 

3. Entropy increase and information 

The proof of Theorems 2.1 and 2.2 will employ the concept of "information" 

[7]. Let P = (P~) be a finite (or countable) partition of if'. Then I(P), the 

information of P, is the function on ~ defined by 

(3.1) I(P)(x) = - log/z (P(x)), 

where P(x) is the atom of P containing the point x E if'. (The atoms of P are 

Pt, P2,""" .) Note that 

(3.2) H(P)= E(I(P)) ( =- f dl~l(P)). 

For any sub-tr-algebra ~ C~:, let ~/ be the measurable partition of 

associated with ~ [8, 1, 7], let M(x)  be the fiber of ~ containing x, and let 

/~( . l~ t (x) )  be the conditional probability given M(x). Since (~,~,/ .~) is a 
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Lebesgue space, /z(. I ~t(x)) - -  a version of the conditional probability given 

- -  is well defined as a measure on the Borel sets ~o /z  a.e. Suppose ~ is 

another sub-tr-algebra C ~. Then the conditional information of ~ given ~ is 

the function 

(3.3) I(M l l~ ) (x )  = - l o g / z  (~t(x)l ~ (x)). 

In particular, for a finite partition P, 

(3.4) I(P II ~ ) (x )  = - log/z (P(x)l @ (x)). 

(Since h(u, ~ )  and I(M I1~) depend, mod 0, only on the measure algebras of 

and @, and since for every sub-tr-algebra @ C @ there is a sub-tr-algebra 

%, C ~ ,  (the Borel sets) which defines the same measure algebra as @, we may, 

and will, assume that the sub-tr-algebras to which we refer are subalgebras of 
~,>.) 

n(~r  II ~) ,  the conditional entropy of M given @, is the expected value of the 

conditional information: 

(3 .5)  

Recall that 

H(~t I1~)= E(I(~ II~)). 

H(P, ~,)= . ( P  II oV, ~-~ = H(P II 4'- '~) 

d~(.l@(x))}~, gkd~(.l@(x))]~, d~( (x)) 

= -  ~ ' x " l o  /dv('l@(x))'~ f d~,(.[ t )) gkd~(.l~(x)),l~, 

C ~ C ~ ,  let 

h(,,, ~t II~)(x) 

(3.8) 

(3.6) f 

= E(/(P II + '~.))-- J (dx )H(P l (~b-l~# )(x )), 

where we are using the notation H(Pl~(x) )  for the entropy of P computed 

using the measure /~(-I ~ ( x ) )  - -  the entropy of P relative to the fiber ~ (x ) .  

More generally, 

(3.7) n ( s r  l l~)  = f I~ (dx )H ( ~ l N (x )), 

where H ( ~ / I ~  (x)) = oo unless ~/ is countable /x (. [ N (x))-mod 0. 

We will also need the concept of conditional non-equilibrium entropy. For 
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where (av(.l~(x))/a~,(.l~(x)))~ is the derivative of v ( . l ~ ( x ) )  w.r.t. 
/z(. I ~ (x) ) ,  both regarded as measures on M, The measurability of h (v, M II ~ )  
follows from the observation that 

d g ( ' l ~ ( x ) ) ] ~ - O ~  E ( p a I ~ )  
(3.9) 

where p = dv/d~. 

LEMMA 3.1. 

(3.10) 

PROOf. 

Suppose ~ c sr and let v ,~ lx with h ( v ) >  -oo. Then 

h ( v , ~ ) - h ( v , M )  = - f d,~h(,,,sCl]~). 

: f d 1og -= f  (dx) f P~ P~ 

from which the lemma follows by (3.9). 
Since h (v o ~b -~, M ) =  h(v, ~b-~M), we directly obtain from Lemma 3.1 

COROLLARY 3.1. Let M C cbM. Then 

= - f dvh (v, ~ II (h-'M). (3.11) A*(v, M) 

LEMMA 3.2. Suppose ~ C s~. Then 

(3.12) sup,,~, (h(v, ~ ) -  h(v, a ) )  = sup I ( a ,  II~)(x) ,  
h(v)>-~  

where the sup on the RHS denotes the iz-essential supremum. 

PROOF. Note that 

sup ( -  h(,,, s~ Jl~)(x)) 
h(v)>-| 

I -- log/Z (Mmi.(X)l ~ (X)) if -~ is finite /z (. I ~ (x))-mod 0, 

t oo otherwise, 

where M.d,(x) is an a tom of M (w.r.t./L (. I ~ (x))) whose/z  (. I ~ (x))-measure is 
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minimal. Since v may be chosen to be more and more concentrated on fibers 

:~ (x) for which - log ~ (Mmi,(x)t ~ (x)) is "large," the lemma follows easily from 

Lemma 3.1. (That no measurability problems arise follows, e.g., from Rohlin [8], 

section 4, No. 1, applied to the quotient by M of the measure space (if', M, g) . )  

From Lemma 3.2 we immediately obtain 

THEOREM 3.1. 

(3.13) 

In particular, 

(3.14) 

Suppose M C Csg. Then 

A*(sr = supI(M 11 r162 

A* (Mp) = sup I(P [1 r  

4. Proof of main results 

Suppose M C4aM. Since, by Eq. (3.5), H(MII4a-'M)= E(I(MH4a-'M)) , we 
may immediately obtain from Eq. (3.13) that 

(4.1) A*(M)>= H(M IIcb-'M). 

This can be somewhat strengthened: 

THEOREM 4.1. Suppose M C 4aM. Then 

(4.2) A*(M) => y ( n ( ~  II 4a-'~)). 

In particular, if 44 is ergodic and H(qb)<oL 

(4.3) A* _-> [ ( n ( ~ ) ) .  

PROOF. To prove Eq. (4.2) it will suffice to show that 

H(sill4a-'M)>logn ~ A*(M)=> log(n + 1). 

Suppose H(M [[,b-~M)> log n. Then, by Eq. (3.7) with N = r 

(4.4) H(~l(4a-'sg)(x)) > log n 

for a set of x ~ �9 of positive /x-measure. Since partitions P with n or fewer 

atoms have entropy H(P) <-_ log n, we conclude that for those x for which (4.4) 

holds, ~ is either infinite or finite with at least n + 1 a toms/z (  [(r 
rood 0. If M has n + 1 or more atoms tt (" [ ( r  0, the measure of its 

smallest atom can be no greater than l/(n + 1). Thus, for x satisfying (4.4), 

I(M [[ ~b-lM)(y)_->log(n+l)  for a set of y of positive /z(dy [(~b-~M)(x))- 

measure. Therefore, by Eq. (3.13), A*(M)_-> log(n + 1). 
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Equation (4.3) now follows, since 

II = fcht (p II = [(H(P, 4 ' ) )  = f ( H ( 4 ' ) )  

if H(P, 4') = H(4'). 

PROOF OF THEOREM 2.1. We complete the proof of Theorem 2.1 by establish- 

ing, for every e > 0, the existence of a finite partition P for which H(P, 4')= 
H(4')  and A*(Me)<=[(H(4"))+e. Our principal tool will be Sinai's weak 

isomorphism theorem, which says that every ergodic automorphism 4' has 

Bernoulli factors of any entropy =< H(4,) [2, 10, 11]. (By Ornstein's isomorphism 

theorem [6], Bernoulli shifts are characterized by entropy - -  Bernoulli shifts of 

the same entropy are isomorphic.) We will use this result to establish the 

existence of finite partitions P such that the sequence of iterates P, 4,P, 4,2p,. . .  

has the "appropriate" structure. 

Consider first the case H(4 , )=  log n, n = 2 , 3 , . . . .  (Theorem 2.1 is trivial in 

case n = 1.) Let P={P~}, tz(P,)=l/n, be an independent generator for a 

Bernoulli factor of 4, of entropy log n. (That P is independent means that the 

(P, 4') process, i.e. the process Y,(x)= P(4'"x), is a sequence of independent 

random variables.) It follows from the independence of P that I(P [[ 4 ' - 'Mp)= 

log n so that we obtain using (3.14) 

(4.5) A*(M~.) = log n 

for this P. Since P is a generator of a factor of entropy log n, H(P, 4,) = log n = 

H(4,)  and Eq. (2.1) is established for this case. 

Consider now the case H(4,) # log n, n = 1, 2, 3 , - . . .  To establish Eq. (2.1) it 

will suffice to show that if H(4,) < log n, n = 2, 3, -- -, then for any e > 0 there 

exists a finite partition P such that H(P, 4 ' )=  H(4 ')  and 

(4.6) A* (Me) _--< log n + e. 

Consider the stationary Markov chain M~.~, k _-> 1, l _-> 2, with the transition 

structure shown in Fig. 2. All transitions are of probability 1/n, except for those 

which are obviously of probability 1 and for the transitions from state 0, which 

are of probability �89 

Mk.~ is obviously irreducible, and the loop at 0 makes the chain aperiodic. Thus 

the Markov shift/~/k,t associated with Mk.t - -  the shift on the space of two-sided 

trajectories equipped with the process measure - -  is mixing [2] and hence 

isomorphic to a Bernoulli shift [6]. 

Suppose the entropy Hk.t of/~/k,t = H(4'). Then 4, has a factor isomorphic to 
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k columns 

I states 

Fig. 2 

r O W S  

/Gh,,. Let P be the natural Markov generator of this factor, so that the (P, 4,) 

process is equivalent to Mk.~. Then 

t(e If = log n, log 2, or 0 

each with positive probability, so that, using (3.14) and the Markov property, 

A*(sCe) = log n. Since H(P, 4,) = Hk., = H(4,), we are done in case H(4,) = H~,, 

for some k_->l, 1_->2. 

We now compute Hk,t. Let us denote by P,i the transition probabilities and by 

rr, the stationary probability distribution for Mk.~. Then (using e.g. (3.6)) 

(4 .7)  Hk,t = - ~ zripo log p,j. 
I,I 

�9 r, is equal to the fraction of the time spent in state i. Since the expected number 

of direct returns to state 0 (starting from state 0) is I, ~r = {~-,} has the following 

structure: Each state at the bottom of the structure diagram for Mk.~ and each 

vertical cluster of n states on top has (It) probability ]/(k + 1 + 1), except /or  

state 0 which has probability 2/(k + l + 1). Thus 

k 2 
(4.8) Hk., - k + l + 1 log n + k + I +~------i log 2. 

Let D={Hk .~ ik  : ' 1 ,  1=>2}. We are done if H ( d ) ) ~ D ,  which is dense in 

[0, log hi. Suppose H(4,) ~ D. If Hk,~ is slightly larger than H(4,), we perturb 

MEj slightly to obtain a (mixing) Markov shift/~/~,,~ of entropy H(/f/~.t) = H(4,). 

If P is the natural Markov generator of the factor of 4, isomorphic to/s then 

z~*(~)  will be only slightly larger than log n. 

M~.~, 0 < 6 < l/n, is a Markov chain with the same structure as M~.~, except that 

two of the transitions from each state on top (i.e., from each state from which 
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transitions to n other states are possible) have their probabilities changed from 

1/n, 1/n to 1/n + & 1/n - & The description previously given for the structure of 

the stationary probability distribution for Mk.t is valid for M2.~ as well. Thus 

(4.9) 

H(M~.,) 

where 

k + l + l  

+ 1 -  logn + k +1+------1 

k 
n k ,  I - -  , ") 

n(k + ! + 1) g (8 ,  

(4.10) g(8)  = (1 + nS)log(1 + nS)+ (1 - nS)log(1 - nS); 

g ( 8 ) > 0  and g ( 8 ) ~ 0  as 8 ~ 0 .  

Let g < 1/n be so small that 

(4.11) log ( 1 ) -  log ( 1 -  g)  < e. 

It follows from (4.8) and (4.9) that if H ( t h ) >  0, and if k and l are chosen so that 
- H(Mk.t) H(qb) for some 0 < 8 < g. O<Hk.i H(ck) is sufficiently small, then ^ ~ = 

With this choice of 8 H(P,  d,) = H(~k) and using (4.11) 

a" = sup t ( P  II < (log ,,) + 

This completes the proof of Theorem 2.1. 

PROOF OF THEOREM 2.2. Recall [2] that 

(4.12) 

and note that 

(4.13) 

Thus, if ~b" 

H(rk")  = nil(ok), 

~ . f ( ~ ) f f  = 1. 

is ergodic for all n --- 1, it follows from Theorem 2.1 that 

At the end of section 5 we will show that if ~b (but not necessarily ~b") is ergodic, 

we still have that A*" = f (H(ck ")), and the proof will be complete. �9 
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5. Extension to H ( 4 , ) =  ~ and nonergodic 4, 

A* has been defined only for 4, ergodic with H(4 , )<  oo. If 4, is not ergodic, 
there may be no finite partition P with H(P, 4,) = H(4,), and if H(4,) = % then 
H(P, 4') <- H(P)<  oo = H(4,). In either case, the infimum in (1.12) may be over 

the empty set. 
By a theorem of Rohlin and Sinai [9], sub-a-algebras M satisfying s~ C 4,~ 

and H(s~ 114,-~s~) = H(4,) always exist, even if H(4 , )=  ~. Thus the quantity 

inf A* (~/), 

(5.1) F/(~r II 4,-'~) - H(4,) 

is well defined for all 4,. Moreover, for finite P, H(P, 4 , ) = H ( 4 , ) ~  
H(sCPll4,-'s~p) = H(4,), so that by Eq. (4.2)the quantity (5.1) agrees with A" 
whenever the latter is defined and thus may be regarded as extending A '~ to all 4,. 
Thus we will write A* for the quantity (5.1). 

It now follows from (4.2) that Eq. (2.1) is also valid when H(4 , )=  ~, More 
generally, suppose 4, is any (not necessarily ergodic) automorphism of (~f, ~,/~ ). 
Let 5~ be the sub<r-algebra of 4,-invariant sets (A E ,r r 4,A = A ). ~ has the 
ergodic decomposition (into extremal invariant probability measures): 

~(.)= f ~(dx)~(.ly(x)). 
For x E ~, let 4,x be 4, regarded as an automorphism of (5(x), tz( .  15(x))). (4,x is 
ergodic.) Then 

THEOREM 5.1. 

(5.2) A* = f ( sup  H(~b,)), 

where the "sup" denotes the i~-essential supremum. 

PROOF. 

(5.3) 

LEMMA 5.1. 
mod 0, 

(5.4) 

We first prove that for M C4,M and H(M II H(4,) 

Suppose d c 4 , ~ ,  H(sCH4,-1sr and ,~ Cst. Then, 

E(~(~ ]14,-'~)[~)(x)= n(4,,). 
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PROOF. 

(5.5) H(M JJ 4,-'M) =< H(4,). 

Applying (5.5) to the ergodic components of 4' gives 

E(I(M Jl 4,-'M)] ,r _-< H(4,x). (5.6) 

But 

It follows from theorem 5.14 of [7] that for any sub-o,-algebra sg with 

LEMMA 5.2. 

(5.10) 

on ~. 

PROOF. 

Suppose d C dam is strictly countably generated. Then, mod 0, 

~( .J~(x))= ~(.J(- ~ n,~)(x)) 

Let A E M and write Xa for the characteristic function of the set A. 

f t z I I - 'M)J ,~)(x)=E(I(MII&-~M))  (dx )E(I(~ 4, 

(5.7) f 
= H(M IJ 4, 'M) = H(4,) = ] tz (dx)H(4,x) [41, 

and the lemma follows. �9 

COROLLARY 5.1. Suppose sg C4,~, H(M JJ4,- '~)= H(4,) and ~ CM. Then, 
mod 0, 

(5.8) sup I(,~ J[ ~b-'M) (y) >- [(H(Ox )), 
yE.C(x) 

where "supy~x~" denotes the ix (. I ~ (x ))-essential supremum. 

PROOf. It follows from (4.2), (3.13), and (3.5) that 

(5.9) sup II => t(eci(  II 
Applying (5.9) to the ergodic components of 4, gives 

sup I(M [J 4,-'sg)(y) > f (E(I(M IJ 4,-'M)[ S)(x)). 
y~,~(x) 

The corollary now follows from Lemma 5.1. �9 
Equation (5.3) follows easily from (3.13) using Corollary 5.1, provided 5~ C sg. 

To handle the general case, we replace sr by s/vS~ in (3.13). The key 
observation in proving that we may do so is 
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Then 
#(A IS~(x))= !iml ~,' XA(ck'x) 

j = 0  

is M measurable. Thus, /~(A [,r is ,~ CI M measurable, and therefore 

(5.11) t~ (A [ 0r (x)) = p. (A [ (5~ Q M) (x)), rood 0. 

The lemma follows by letting A range over a suitable countable class. 

Suppose sg C ~h~. Then, mod 0, 

I(M 11 &-'M) = I(M v ~ 11 & - ' ( ~  v ~ )). 

COROLLARY 5.2. 

(5.12) 

In particular, 

(5.13) 

(5.16) A* (~t) ~ f ( s u p  H(r )) + e. 

By working within the fibers of ~r - -  the ergodic components of & - -  in the same 

way as in the ergodic case, we can construct a partition P such that M = ~ e  v 

(5.15) 

and 

n ( ~  11~, ' J ) -  n ( J  v s [I 6- ' (~  v s)). 

PROOF. If M were strictly countably generated, (5.12) would be an immediate 

consequence of Lemma 5.2. Since every sub-or-algebra d of a Lebesgue space 

has a strictly countably generated version ~,, [I, 8] (i.e., ~,, and sr define the 

same measure algebra), and since the information is version independent, (5.12) 

follows. 

We remark that it follows from Corollary 5.2 that the conclusion of Lemma 5.1 

is valid even without the assumption that S C,ff. 

PROOF OF EO. (5.3). Applying Corollary 5.1 to ,ff v ~r we obtain 

A*(M) = sup I(M II 6 - ' M ) =  supI(M v 5 II qs-'(M v ~r 

( 5 . 1 4 )  = sup sup I(M v t II ~, '(~ v s ))--> sup t (H(~))= t( s2p n ( ~  )). 
x y ~ ( x )  x 

The last equality follows from the fact that [ is increasing and continuous from 

the left. �9 
To complete the proof of Theorem 5.1 we show that given e > 0 there exists a 

sub-o'-algebra M C &,ff such that 

H ( ~  H r  H(r 



254 S. GOLDSTEIN Israel J. Math. 

would satisfy (5.15) and (5.16) if P were measurable. However,  it is not obvious 

that P can be chosen in such a way that this is so. To obtain the desired P we will 

use Proposition 5.1 below, a generalization of Sinai's weak isomorphism 

theorem. 

Let T be an automorphism of the Lebesgue space (8, A ) with finite generator 

/5. Let 5 ~ denote the sub-o'-algebra of T-invariant sets, and let T,  y ~ 8, be the 

ergodic components of T, i.e. Ty is T acting on (5 ~ (y), A (. I 5~ (y))). We say that/5 

is conditionally finitely determined (w.r.t. T) if it is finitely determined [6] w.r.t. 

Ty for every y E 8. (Recall that finitely determined partit ions/5 are precisely 

those for which the shift on the (/5, T) process is isomorphic to a Bernoulli shift 

[6].) We write H(T.)  = H(,;b.) if the distribution of H(Ty)= the distribution of 

H(~bx). We say that T is entropy injective if the function y ~ H(Ty) is injective 

mod 5~ (i.e., n(Ty)= H(Ty,) ~ 5~(y)= ~(y')) .  

PROPOSmON 5.1. Suppose (i) /5 is conditionally finitely determined w.r.t. T, 

(ii) T is entropy injective, and (iii) H(T. ) = H(cb. ). Then there exists a partition P 
of 9g such that (P, ck) ~ (/5, T) (i.e., the (P, 4)) process is a copy of the (/5, T) 
process in the sense that they correspond to the same measure on the space of 
trajectories). 

PROOF. The proposition can be proven with minor modifications of Orn- 

stein's argument for the ergodic case (see [6], chapter 4, section 2), using versions 
of the ergodic theorem and the Shannon-McMiUan-Breiman theorem valid for 

non-ergodic automorphisms [2]. We omit the details. �9 

The existence of a sub-o'-algebra sg C qSM satisfying (5.15) and (5.16) may now 

be established as follows: We may clearly assume that 

(5.17) sup H(~bx) = a < o0. 
x 

We may also assume that 

(5.18) t4(6x) > t3 >0 ,  

since we can always piece together the appropriate g-algebras sr on {H((kx)E 

[1/0 + O, l/j)}. 
Suppose log(n - 1 )<  a < log n, n => 2. Then we may let M = Me (or .fie v 5 )  

where P is the partition (with (P, ~b) - (/5, T)) whose existence is guaranteed by 

Proposition 5.1 applied to the process (P, T) which we now describe. 
(/5, T) is a convex integral of the Markov process M~,~ (see section 4): 

(5.19) (/5, T) = / o'(dt )Mk,,).,,),~') 
JR 
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where g (dt), ~ (t), k (t), and l(t) are chosen so that (ii) and (iii) of Proposition 5.1 

are satisfied, cS(t)< g (see Eq. (4.11)), and k(t) and l(t) are <=N <0o. Since 

H(4'~) >/3 > 0, this can easily be done, and a finite partition t3 having no more 

than (n + 1)N elements thereby obtained, by using Eqs. (4.8), (4.9) and (4.10). 

We omit the details. 
If a = log n, Proposition 5.1 can be applied directly to the pieces {H(4'~)E 

[(log n ) -  1/j, (log n ) -  1/(j + 1))}, for each of which P may be chosen as above, 

and to the piece {H(4',) = log n}, for which (P, T) may be chosen to be Bernoulli 

process on n equiprobable states. The proof of Theorem 5.1 is complete. �9 

COMPLETION OF PROOF OF THEOREM 2.2. We now use Theorem 5.1 to 

complete the proof of Theorem 2.2 (see the end of section 4). 

Suppose 4'~ is not ergodic, and let 5 ~t~ denote the sub-o,-algebra of invariant 

sets for 4' n. Consider the action 4', of 4' w.r.t, the factor 5~ ~"~. Since 4', is ergodic 

and 4'," is the identity transformation, the structure of 4', is that of a single finite 

cycle. Thus ~<"~= {~h ' "  ", ..r N < n, is a finite partition, and 4'flj = ,~j+,.,oaN). 

Thus 4'" acts isomorphically on each of the fibers oCj; in particular, H((4'~)~)= 

H(4' ~) for all x ~ ~f, so that by Theorem 5.1, A ~ = f(H(4'")). �9 

6. New definition of K-S entropy 

Suppose 4, is ergodic. If we regard a vacuous infimum as infinite, A m as defined 

by (1.12) is well defined even for H(4 , )=  ~. Then the equation H(4 , )=  A,*s 

expresses a relationship between H(4,) and A m, but since the definition of A m 

makes reference to H(4,), A,*s, as formulated, cannot be regarded as providing an 

alternative definition of H(4,). However, reference to H(4,) may be avoided by 

referring to principal cr-algebras. 
Let ~ be a sub-o--algebra with 4,qr = % Then q~ is principal if ~ 3 ~ and 

4,~ D ~ implies that 4,~ = ~ ,  for any ~ C ~. Let 4,~ denote the factor of 4' 

corresponding to cr Then if ~ is principal, H ( 4 ' ) =  H(4'~), and conversely if 

H(4,) < ~, 4'~ = % and H(4')  = H(4'~), then cr is principal (see [7]). Thus for P 

finite the condition "H(P,  4') = H(4 ' )"  is equivalent to "V ,~z4'"P is principal." 

Thus A m may be defined without reference to H(4').  
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